Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.

نویسندگان

  • Yafei Li
  • Zhen Zhou
  • Panwen Shen
  • S B Zhang
  • Zhongfang Chen
چکیده

One-dimensional AlN nanowires/tubes were exploited as hydrogen storage media. The adsorption of atomic and molecular hydrogen on AlN nanowires was investigated by using density functional theory computations. Hydrogen atoms prefer to adsorb on top of neighboring threefold-coordinated N and Al atoms in pairs. A hydrogen molecule, however, prefers to adsorb on top of threefold-coordinated Al atoms in the nanowire surface, with an adsorption energy of 0.21 eV. H(2) dissociation is exothermic in the surface of AlN nanowires, and the dissociation barrier is rather low (0.76 eV), indicating that chemisorption is a feasible route for hydrogen storage in AlN nanowires/tubes. A maximum 3.66 wt% of molecular and 2.44 wt% of atomic hydrogen can be stored in AlN nanowires/tubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Fabrication of Densely Packed AlN Nanowires by a Chemical Conversion of Al2O3Nanowires Based on Porous Anodic Alumina Film

Porous alumina film on aluminum with gel-like pore wall was prepared by a two-step anodization of aluminum, and the corresponding gel-like porous film was etched in diluted NaOH solution to produce alumina nanowires in the form of densely packed alignment. The resultant alumina nanowires were reacted with NH(3) and evaporated aluminum at an elevated temperature to be converted into densely pack...

متن کامل

SYNTHESIS AND CHARACTERIZATION OF DOPED AND UNDOPED ZnO NANOWIRE/NANORODS COATING ON VARIOUS SUBSTRATE (AlN, SiO2 AND FTO) FOR PHOTOVOLTAIC HYDROGEN SENSOR APPLICATIONS

Zinc oxide and Ga-doped ZnO nanowires and nanorods are synthesized on various substrate like Fluorine doped tin oxide glass plate, SiO2 coated Silicon substrate and aluminum nitride coated silicon substrates. The coating process carried out using zinc oxide sol-gel solution. The synthesized material was characterized using XRD (X-ray diffraction), FE-SEM (Field emission scanning electron micros...

متن کامل

The effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders

Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...

متن کامل

The effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders

Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 21  شماره 

صفحات  -

تاریخ انتشار 2009